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Abstract—A new class of coaxial broad-band directional cou-
plers for high-power RF testing is presented. These devices over-
come the drawbacks of classical stripline and coaxial couplers, and
allow simple low-cost mechanical construction. A design technique
for the new longitudinally nonuniform transversally nonsymmet-
rical couplers is described, providing the synthesis of any coupling
shape versus frequency. As a first demonstration of the proposed
method, a set of broad-band (2–7.5 GHz) low-coupling ( 30, 33,

35 dB) nonsymmetrical coaxial directional couplers in air has
been designed, built, and characterized, showing very good agree-
ment between predicted and obtained performances.

Index Terms—Broad-band couplers, coaxial cables, coaxial
couplers, conformal mapping.

I. INTRODUCTION

D IRECTIONAL couplers are key components in almost
every microwave application requiring phase shifting,

power combining and dividing, or power sampling. Coaxial
directional couplers are the traditional high-power solution
when bandwidth specifications are not critical [1]. Waveguide
Bethe-hole couplers [2] are also used in high-power applica-
tions and many approaches have been proposed to widen their
band, including multiaperture [2]–[5] and continuous-aperture
[6] configurations, and narrow-wall structures [7]; unfortu-
nately, the bands of waveguide couplers have intrinsic lower
bounds because of their cutoff frequencies. Finally, stripline
and microstrip directional couplers have attractive broad-band
characteristics, but they are affected by significant losses and
low power-handling capabilities. Two main techniques are cus-
tomarily applied for the realization of broad-band strip devices.
The first one is to cascade quarter-wavelength sections of uni-
form coupled lines [8]–[12]; this introduces step discontinuities
at the interfaces between the different sections, degrading the
coupler directivity. The second technique exploits continuously
tapered structures [13]–[16], thus avoiding discontinuities.

Measurement applications, such as load– and source–pull
systems, require both broad-band and high-power characteris-
tics. Coaxial structures in air would be ideal for their low losses,
their TEM (or quasi-TEM) field configurations ensuring zero
cutoff frequency, and their high power-handling capabilities. In
order to obtain coaxial structures with bandwidths competitive
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Fig. 1. Cross section of a nonsymmetrical rectangular coaxial directional
coupler: dimensions and per-unit-length capacitances. The light-grey sections
belong to the longitudinally nonuniform diaphragm.

with stripline and microstrip devices and presenting minimum
discontinuities, it is necessary to properly design a continuous
variation of the coupling factor along the propagation
direction . A rather unpractical approach would be to control

through a longitudinal variation of the distance between
the inner conductors or their diameters. In these cases, the
mechanical realization with a suitable degree of repeatability
is difficult and expensive since it implies, e.g., the precise
bending or casting of a metallic rod.

The practical solution adopted in this paper is to insert, be-
tween the two inner conductors with fixed diameter and dis-
tance, a thin metal diaphragm with a properly shaped aperture,
corresponding to the desired longitudinal profile of the coupling
factor. Our technique is a generalization of the approach pro-
posed by Arndt [17], [18], and can be applied to couplers of ar-
bitrary cross section and to any longitudinal symmetrical and
nonsymmetrical profile. Fig. 1 shows the cross section
of a transversally nonsymmetrical rectangular coaxial coupler
with a diaphragm. The transversal analysis is carried out with a
fast and accurate algorithm based on numerical conformal map-
ping (NCM) [19], providing the coupling factor and the char-
acteristic impedances as functions of the structure dimensions.
A technique derived from stripline theory [14] is then applied
to the longitudinal design of the nonuniform diaphragm. The
required mechanical tolerances are generally of the order of
0.1 mm, thus allowing low-cost couplers with bandwidths as
large as required and excellent repeatability, since the metal di-
aphragm can be easily realized with accurate and inexpensive
photo-etching techniques. A broad-band coupler prototype has
been built and characterized (see Fig. 2), and the experimental
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Fig. 2. Scheme of the realized coupler.

results show very good agreement with the design specifications
and electromagnetic simulations.

This paper is organized as follows. Section II describes the
design method applied to the new coaxial broad-band cou-
plers and discusses some general properties of these structures.
Section III introduces the nonuniform couplers that have been
designed and fabricated and compares simulations with mea-
surements. Conclusions are presented in Section IV.

II. DESIGN METHOD

Our design method for broad-band coaxial couplers is based
on the quasi-static assumption that decouples the longitudinal
and transversal problems. Thus, the first step of the design
procedure is the evaluation of characteristic impedances or
per-unit-length capacitances (for nonsymmetrical structures)
as functions of the transversal geometrical parameters. This
task is performed with great accuracy and at a fraction of
the computational cost of other numerical techniques such as
the finite-element method by the NCM code developed by
Teppati et al. [19], which allows the study of couplers having
cross sections both circular and rectangular, symmetrical and
nonsymmetrical, and with and without diaphragms. In the most
general nonsymmetrical case, the usual description in terms of
even- and odd-mode impedances and does not hold, and
one must define a capacitance matrix

(1)

where , , and are the per-unit-length capacitances
shown in Fig. 1. The coupling coefficient is derived from
following the classical formulation by Cristal [20, eqs. (2)–(7)
and (16)–(26)].

The longitudinal design procedure adopted in this paper for
nonuniform coaxial couplers is an extension of the method
presented in [14] and [21] for ultra-broad-band stripline
couplers. This approach has been revised, implemented in
MATLAB,1 and applied to both conventional coaxial couplers
and novel structures with diaphragms. Starting from a given
(arbitrary) coupling frequency profile , this technique
allows the computation of the corresponding coupling variation
along the longitudinal direction . According to [14, eq.
(3.13)], the coupling can be written as a function of the
reflection coefficient distribution

(2)

where is the total coupler length and is the compensated
phase velocity. Therefore, for a desired coupling function ,

is first computed as [14, eq. (3.15)]

(3)

where is the design center frequency and, hence, the coupling
coefficient is obtained as

(4)

The aim of the longitudinal design procedure is to build an
approximation of the target coupling function by
varying along a geometrical parameter (e.g., the diaphragm
aperture or the distance between the inner conductors). The
optimum function is found by minimizing the difference
between and the target coupling profile

(5)

where may be computed through NCM analysis (see
the examples in [19]).

It must be observed that the simultaneous maximization of the
coupler directivity would require the optimization of an addi-
tional geometrical parameter. For symmetrical couplers, where
the condition for infinite is [20], with

being an arbitrary reference impedance, this implies that the
(less practical) choice of instead of as an optimization ge-
ometrical parameter for offers at least the advantage of al-
lowing a better since the product is almost independent
of .

III. DESIGN AND CHARACTERIZATION

The proposed design procedure has been applied to realize
a set of three broad-band couplers in air with a nonsymmet-
rical rectangular cross section. The set shares the same external
structure, the difference being in the aperture profiles of the thin
( mm) metal diaphragms, corresponding to coupling co-
efficients of 30, 33, and 35 dB, respectively, in the band
between 2–7.5 GHz. The upper band limit is the maximum fre-
quency of the 7/16 series of high-power coaxial connectors. It

1MATLAB is a registered trademark of Mathworks Inc., Natick, MA.
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Fig. 3. (a) Target coupling factor K(z) and (b) designed aperture half-width
s (z) for the three realized couplers.

would be possible to extend the band to frequencies lower than
2 GHz by increasing the coupler length, which has been chosen
to be 42 mm. The choice of mm allows the main coaxial
line (the larger one) to be interfaced with the 7/16 connectors,
thus limiting the mismatch losses. The inner conductor radius
of the coupled line has been set to mm, as a compro-
mise between contrasting needs. In fact, on the one hand, inter-
facing the coupled line with subminiature A (SMA) connectors
would require to be equal to the standard SMA internal con-
ductor radius (0.65 mm) in order to obtain better matching. On
the other hand, the radius needs to be increased in order to grant
mechanical stability and repeatability and to raise the coupling
coefficient to the desired values. Also, the distance and posi-
tion of the inner conductors ( mm and mm)
have been chosen as a compromise between higher coupling and
mechanical constraints. The other dimensions ( mm,

mm, mm, and mm) grant
that both the coupled and main line have 50- characteristic
impedance when the diaphragm aperture width is zero, assuring
the impedance matching at the connector interfaces.

Fig. 4. Measurements (circles) and simulations of the coupling coefficient
K(f) for the realized couplers.

The target coupling and the corresponding optimized
aperture profiles are reported in Fig. 3 for the three coupling co-
efficients ( 30, 33, and 35 dB at the central frequency). The
MATLAB tool implementing the optimization process allows to
export these profiles in a portable computer-aided design (CAD)
format. The three metal diaphragms have been realized with
photo-etching techniques on a 0.1-mm-thick brass sheet. Fig. 2
shows a scheme of the realized coupler. Since the coupler main
line is a perfect air line, the only power limitation of the coupler
is due to the connectors (the 7/16 series can handle a maximum
power of approximately 100 W).

Finally, the four-port scattering parameters of the couplers
have been measured with a two-port network analyzer, cali-
brated at the SMA ports with a short–open–load–thru (SOLT)
calibration. The scattering parameters of the SMA-to-7/16
transitions needed for the connection to the main line have
been measured with a short–open–load (SOL) calibration-like
method, where the reference planes were moved from the SMA
connector ends to the 7/16 connector ends with a deembed-
ding technique. Fig. 4 shows the calibrated and deembedded
measurements and simulation results. The measured coupling
coefficient (circles) for the three different diaphragms
is in very good agreement with the expected coupling. The
measured isolation coefficient is 15 dB lower than the coupling
up to 7.5 GHz.

IV. CONCLUSION

A new class of coaxial coupling structures has been pro-
posed and analyzed. These structures represent a significant
improvement for high-power measurement systems since they
have broad-band and good directivity, are easily designed, and
may be fabricated at low cost with excellent repeatability. An
efficient MATLAB tool for the complete design of broad-band
coaxial couplers has been implemented applying NCM for
cross-sectional characterization and a nonuniform coupler
design technique for longitudinal optimization. This tool can
be exploited for coaxial coupling structures of arbitrary cross
section having at least one symmetry plane. Finally, a set of
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broad-band coaxial coupler prototypes has been constructed
and measured, demonstrating very good agreement with
simulations and confirming the validity of the proposed design
method.
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